Before we begin the basic operation, let's look at some of the features and benefits that make Hoshizaki machines so dependable and serviceable. Regular maintenance checks and servicing are made easier with the KM Cuber's removable panels. The component sections are divided into separate compartments, free from the damaging effects of moisture. Separating the evaporator, or wet section, from the dry electrical components of our machines helps eliminate many problem areas. Dividing these compartments also helps insulate the heat generated by the compressor from the cold section, making the KM Cuber more energy efficient. Unlike other ice makers on the market, the KM Cuber's pump motor is housed in a separate insulated compartment away from the moisture of the evaporator, reducing corrosion, bearing, and winding failures. At the heart of our pump assembly is a more efficient, permanent split capacitor motor. This assembly can be easily removed and rebuilt in the field. The sealed evaporator section has a smaller ice drop zone than other ice makers. During operation, positive air pressure helps to reduce the air flow around the evaporator, keeping airborne bacteria out and reducing algae growth. Many manufacturers build evaporator plates in welded sections of copper, which are plated with nickel or tin. Plating the copper is necessary for sanitation and to allow the ice to harvest properly, but it may flake and peel from the copper with age, contaminating the ice. The unique plate design of Hoshizaki's evaporator with its stainless steel freezing surface and oval-shaped serpentine tubing produces a crystal clear, crescent-shaped hard cube of ice which displaces more liquid than square or diced cubes. Since pure water freezes first on the evaporator plate, minerals are left to run off into the reservoir, reducing scale buildup and saving frequent and expensive cleaning. Some of the benefits of the KM Cuber that help make your job easier include removable panels, separate compartments, an insulated evaporator section, a rebuildable pump assembly, a small ice drop zone, and a unique stainless steel evaporator. Now, let's look at the basic sequence of operation of the Hoshizaki KM Cuber. When the power switch is turned to the "Ice" position, the inlet water valve opens, allowing water to enter and fill the reservoir. The one-minute fill cycle assures that the ice machine will not start until there is sufficient water, eliminating overheated pumps and compressor problems. After one minute, the controller board checks to see if the float switch is closed, and if not, repeats the fill cycle until the water level is sufficient. The float switch check also occurs at the end of each harvest cycle to ensure continuous, automatic low water safety. When the switch is closed, the controller starts the initial harvest cycle which runs approximately 2-3 minutes depending on ambient air and water temperature. First, hot gas from the compressor enters the serpentine coils of the evaporator, while the inlet water valve remains open to assist in the harvest. This causes any ice remaining from the previous cycle to be released from the plate, while water continues to fill the reservoir. Starting the compressor in the harvest cycle with the hot gas valve open provides a no-load start, better efficiency, and longer life of the compressor and components. When the thermostat senses that the evaporator temperature has reached 48 degrees Fahrenheit, the solid state defrost completion timer on the circuit board takes control of the remainder of the harvest cycle. During the harvest cycle, the inlet water valve brings water through the supply tube and down the center of the evaporator plates. This water flow also helps transfer heat from the serpentine coils to the stainless steel plates and pre-chills the water flowing into the reservoir. During the freeze cycle, water is pumped to the outside of the plates through the distributor tubes. In the freeze cycle, the hot gas and water valves are closed. As the self-contained condenser fan and pump motor starts, water is circulated up and across the outside of the evaporator plate and back down into the reservoir. The circuit board controls the freeze cycle for the first five minutes, providing short cycle protection. The float switch then assumes control to initiate the next harvest. If power to the machine is interrupted, the unit will always restart in the one-minute fill cycle. Before the second harvest, a 10-second pump-out cycle occurs. As the hot gas valve opens, allowing gas to warm up the evaporator, the pump motor stops for two seconds then begins again in reverse. This pumps out the water containing concentrated minerals from the bottom of the reservoir through the check valve and out the drain. At the same time, water is used to power flush the float switch. For improved cleaning, the pump-out timer on the circuit board may be adjusted to lengthen the cycle to 20 seconds. It can also be adjusted to occur every 1, 2, 5, or 10 cycles. These adjustments provide the service technician with the flexibility to overcome some problems associated with the high mineral content present in some local water supplies. When the pump-out cycle is completed, the pump motor stops and the inlet water valve opens. Just as in the initial harvest, the evaporator is warmed by the hot gas defrost and water assist, clearing any ice left frozen on the plate as the reservoir then refills in preparation for the next freeze cycle. The water level in the reservoir always overflows the stand pipe at the end of the harvest cycle. On top of the stand pipe is a displacement cap, which pulls additional minerals from the bottom of the reservoir and flushes them. This cleaning action can be extended by lengthening the defrost completion timer setting. When the bin is filled with ice, the machine automatically shuts off until more ice is needed. Let's review the basic sequence of operation: the ice maker always starts with the one-minute fill cycle. The initial harvest cycle clears ice from the plate, assures a full reservoir, and allows quick and easy compressor starting. After five minutes in the freeze cycle, the float switch assumes control to initiate the next harvest. The 10-20 second pump-out cleans the reservoir every 1, 2, 5, or 10 cycles. The normal harvest is the same as the initial harvest and allows the flush to clean the reservoir at the end of this cycle. For Tech Support, call 1-800-233-1940.

Copy and paste the embed code above.

Hoshizaki KM Cubers are designed to be efficient, sanitary, and easy to maintain. Stainless steel evaporator plates, a rebuildable pump assembly, and a small ice drop zone are just a few of the many benefits to these cubers.

Plus, each Hoshizaki ice machine is designed for minimal cleaning to save you on cost and labor.

Products In This Video

Related Videos

Undercounter Ice Machines
Undercounter Ice Machines

Ensure that your bar or restaurant has the means to accommodate an undercounter ice machine! Great for a variety of reasons, an undercounter ice machine fits comfortably underneath countertops, so it won't get in the way when your bartenders are at work.

Hoshizaki Ice Types
Hoshizaki Ice Types

Hoshizaki is an industry leader in manufacturing commercial ice machines. They offer a variety of ice shapes to suit any site application. From cube ice to chewable ice and even flaked ice, Hoshizaki has options for every sector of food service.

Hoshizaki AM-50BAE Undercounter Ice Machine
Hoshizaki AM-50BAE Undercounter Ice Machine

Hoshizaki ice focuses on quality, design, and comfort. Delivering the ultimate in performance and reliability, Hoshizaki is perfect for your home or work environment.