Ships free with Plus
Due to a manufacturer's price increase, this price will increase by 6% on 02/01/22

You will only be emailed once the product becomes available. We won't add you to our email list or share your data.

  • Produces up to 547 lb. of crescent-shaped ice cubes per day
  • Protected by H-GUARD Plus antimicrobial agent for safety and sanitation
  • EverCheck alert system and CycleSaver design for energy efficiency and less down time for cleaning
  • Durable stainless steel exterior
  • Requires a remote condenser (sold separately); 115V
Shipping: Usually Ships in 6-8 Weeks
Hoshizaki KM Cubers Training: Part 3

Hoshizaki KM Cubers Training: Part 3

This video will demonstrate the proper way to perform the 10 minute check-out procedure for a system diagnosis of the KM cuber. Before we see how to diagnose electrical and component failures, let’s review the KM cuber’s sequence of operation. First, the unit always starts in the 1 minute fill cycle. Sixty seconds later, the initial harvest begins. Three to four minutes later, the freeze cycle begins. Longer harvest may occur in colder climates. After an average freeze time of approximately 30 minutes, the pump-out cycle occurs. Ten to twenty seconds later, the normal harvest begins. The KM cuber will continue to cycle until the bin control opens to stop the ice production. The first step in the 10 minute check-out procedure is to make sure there is adequate water and power supplied to the unit. When trouble shooting for system failures, remove the front panel, turn the ice maker off, and remove the control box cover. Now turn the unit back on. Remove the evaporator cover and make sure water is entering the reservoir. If there is no water coming in, check the bin control. The bin control contacts supply power to all the other controls in the unit. To check the bin control, flip the unit switch to the “wash” position. In the pump starts, it indicates that the bin control is closed. Next, check the cleaning valve micro switch. Flip the unit switch back to the ice making position. If there is still no water entering the evaporator, check the position of the cleaning valve handle. This handle must be in the horizontal position in order for the micro-switch, located behind the handle, to close. This micro-switch supplies control voltage to the control board. The cycle will not start without control voltage. A quick check of the control transformer secondary will verify that control voltage is present. If the 1 minute fill does not begin after you have checked the bin control and cleaning valve, check for 115 volts to the water valve. Check the terminals of the inlet water valve. If you have voltage, you can assume there is a problem with the water valve. Before replacing the water valve, check the inlet stream for debris. To do this, shut off the water and unscrew the thumbnut behind the water valve. Push the water line aside and inspect the screen. Clean or replace the screen as necessary. Check the water valve coil and diaphragm for problems and replace the water valve if necessary. After correcting the water valve problem, turn the machine on. The ice maker should cycle through the 1 minute fill and start the initial harvest cycle. If the initial harvest cycle does not start after 1 minute, check the float switch. Unplug the float switch and check for continuity with your own meter. If it is not closed and water is in the reservoir, the float switch is either dirty or defective. Clean it and check it to assure proper operation. If the float switch is good, the control board timer is defective and the board should be replaced. If the ice maker cycles into the initial harvest, the float switch is closed and the 1 minute timer works. A minute or so into the harvest cycle, the inlet to the evaporator should feel warm to the touch. As the hot gas circulates, the thermistor at the evaporator outlet reaches 48 degrees. The length of time it takes to reach 48 degrees depends on the ambient conditions and the water temperature. The length of harvest will automatically adjust to be longer in the winter and shorter in the summer. If the evaporator is not warming up, the first place to check is the hot gas valve. Lightly touch the discharge line to see if it is hot. If the discharge is not hot, then there is an obvious refrigeration problem and you’ll have to troubleshoot the system using basic refrigeration practices. If the discharge line is hot, but there is no heat coming from the outlet of the hot gas valve to the evaporator, you should check for coil voltage. To check for voltage, pull the tin pin connector out about 3/8” and check from the pin on the pink wire, which is the hot gas valve, to a neutral white wire. If you get proper voltage, the control board is working. If not, the problem is the control board. If you do get voltage, check the coil to be sure it’s energized. To do this, lay a metal paperclip on the coil. If you can feel a magnetic pull, the coil is energized. If the coil is in fact energized, it is possible that the hot gas valve is stuck. A stuck valve should be replaced using proper refrigeration practices. With normal operation of the hot gas valve, the evaporator will warm. At 48 degrees, the thermistor will start the defrost completion timer. The average harvest cycle and average ambient temperatures will range from 2-4 minutes. Longer harvest will occur with colder supply water or if the defrost completion timer is adjusted longer. If the harvest cycle does not end within 10 minutes, leave the machine running and unplug the thermistor. Check the resistance with your own meter and compare it against the temperature resistance chart in your tech specs book. For example, if your meter reads 6K ohms of resistance, the sensor temperature is 32 degrees. However, after 10 minutes in the harvest cycle, the temperature should be much warmer. This would tell you that there is a refrigeration problem. In another example, if your meter reads 2.5K ohms then the suction line temperature is 70 degrees. Since that temperature is well above the normal 48 degrees needed to start the defrost completion timer, the control board is not responding and there is a problem with the board. Once the harvest cycle ends, the freeze cycle begins. The hot gas valve and water valve de-energize and the pump motor and self-contained fan start. After the ice maker is in the freeze cycle, the evaporator inlet should feel cold within about 3 minutes. If it does, you have basic refrigeration occurring. If the evaporator is still warm after 3 minutes, there is a possible refrigeration problem. This problem might be caused by 1-hot gas valve not closing, 2- coil still energized because of a control board problem, 3- thermostatic expansion valve not opened properly, or 4- insufficient refrigerant. These items should be checked using normal refrigeration diagnostic practices. Next, let’s make sure the ice maker is purging properly by checking the pump-out system. After 5 minutes in the freeze cycle, unplug the float switch to initiate harvest. This will cause the unit to go into a 10 second pump-out that will flush the dirty water and sediment through the check valve and down the drain. You can also squeeze the pump supply hose tight enough to force the water down the drain. This would empty out the reservoir and allow the float switch to open by itself. It is important to understand the control components of the KM cuber. These components include the control board, the float switch, the thermistor, and bin control. First, let’s look at the bin control for any suspected problems or adjustments. A quick check of the bin control can be accomplished by switching the pump to the “wash” position. The unit will not start if the bin control is stuck open. When the bin control is stuck closed, the machine will not automatically shut off. If the bin control is not adjusted properly, it could cause the unit to shut down prematurely or allow ice to back up into the evaporator, causing a freeze-up condition. To check the adjustment of the bin control, access the thermostatic bulb, turn the switch to the “wash” position. Next, place a small amount of ice on the thermostatic bulb. Count the seconds and listen for the pump to shut off. If the pump shuts down within 6-10 seconds, the bin control is adjusted properly. Adjustment can be made with a screwdriver in the bin control slot. The float switch has two primary functions; it provides low water safety protections and initiates harvest. If the float sticks in the down position, which is open, the unit will switch to the one minute fill cycle and run water continuously. If the float sticks in the up position, which is closed, the unit will remain in freeze for 60 minutes. The cubes will be larger than normal and the pump will cavitate before harvest begins. If either of these symptoms exists, the float switch needs to be cleaned and checked. First, take the float switch apart and clean it with ice machine cleaner. Once you’ve cleaned the float switch, check it with an ohm meter to be sure it operates properly. The thermistor monitors the outlet temperature of the evaporator. At 48 degrees, it starts the defrost completion timer. At 127 degrees, it automatically shuts down the machine on the manual reset high-temperature safety. There are only two ways a thermistor can fail: open or shorted. An open thermistor will cause a consistent 20 minute harvest cycle. A shorted thermistor will shut the unit down on the high-temperature safety. When you switch the power off and back on, the safety will not reset. The thermistor should be checked using an ohm meter as previously discussed. Now, the control board. The control board processes information to supply the voltage that allows the components of the ice maker to cycle properly. Many things can affect the control board, but if you have proper supply voltage, proper control voltage, a good float switch, a good thermistor, and good pin connections, and the machine is not cycling properly, you can assume that you may have to replace the control board. Remember, when servicing any Hoshizaki ice maker, always refer to your tech specs guide for detailed information or call the Hoshizaki service hotline on your screen. Understanding these symptoms and the operation of these simple controls will help you diagnose sequence problems on a KM unit using the 10 minute check-out procedure.

Copy and paste the embed code above.

Properly diagnose electrical and component failures with your Hoshizaki KM cuber system by using this 10 minute check-out procedure!

Hoshizaki KM Cubers Training: Part 2

Hoshizaki KM Cubers Training: Part 2

The following preventive maintenance checks will help keep Hoshizaki KM-series cubers dependable and serviceable for many years. Clean the removable air filter. Service the water filter and check the water valve screen. Visually inspect the loose wires, oil spots, water drips, etcetera. Clean the exterior with a soft cloth and neutral cleaner. Clean and sanitize the water system and bin. Annual cleaning and sanitizing of the water system is recommended. More frequent cleaning may be required depending on local water conditions. Cleaning the water system is an easy procedure with the KM cuber. The complete cleaning instructions are listed on the reverse side of the front panel. First, drain the reservoir by removing the stand pipe on M-models or drain plug on S-series models. Mix the cleaning solution according to directions on the panel and then pour it into the reservoir. Hoshizaki recommends Hoshizaki Scale Away or Economics Lab’s Lime Away. However, the durable stainless steel evaporator plate will not be harmed by any commercialized machine cleaner. Set the control switch to wash and turn the evaporator cleaning valve to the “open” or “wash” position. With these controls set, the pump circulates cleaner inside and outside of the evaporator plates. Since the inside pass does not collect heavy mineral deposits, allow the cleaner to circulate through the cleaning valve for about 5 minutes. Then, turn the cleaning valve back to the horizontal position. This allows all the cleaner to flow on the outside of the plates where more cleaning is needed. Once the flat surface is clean, pull the distributor tubes out 3/8” to allow the cleaner to flow down the evaporator ribs. When cleaning is completed, flush the rudder system thoroughly with clean, fresh water. Turn the control switch to the “ice” position. The ice maker will restart in the normal sequence of operation. The same procedure should be used to sanitize the water system. Mix the commercial ice machine sanitizer as per directions on the panel or a 5 1/4 percent sodium chloride solution. Circulate this solution for 5-10 minutes over the evaporator surface and ribs. Flush the solution from the machine with clean, fresh water before restarting the ice maker. We hope this video has helped you better understand the basic sequence of operation and check-out procedure for Hoshizaki KM Cubers. Call our toll-free hotline for further information on KM cubers or other Hoshizaki products. Remember, the name Hoshizaki stands for dependable and serviceable ice makers, designed with the service technician in mind.

Copy and paste the embed code above.

Learn how to correctly clean and sanitize your Hoshizaki KM cuber in just a few simple steps with this instructional video!

Hoshizaki KM Cubers Training: Part 1

Hoshizaki KM Cubers Training: Part 1

Before we begin the basic operation, let's look at some of the features and benefits that make Hoshizaki machines so dependable and serviceable. Regular maintenance checks and servicing are made easier with the KM Cuber's removable panels. The component sections are divided into separate compartments, free from the damaging effects of moisture. Separating the evaporator, or wet section, from the dry electrical components of our machines helps eliminate many problem areas. Dividing these compartments also helps insulate the heat generated by the compressor from the cold section, making the KM Cuber more energy efficient. Unlike other ice makers on the market, the KM Cuber's pump motor is housed in a separate insulated compartment away from the moisture of the evaporator, reducing corrosion, bearing, and winding failures. At the heart of our pump assembly is a more efficient, permanent split capacitor motor. This assembly can be easily removed and rebuilt in the field. The sealed evaporator section has a smaller ice drop zone than other ice makers. During operation, positive air pressure helps to reduce the air flow around the evaporator, keeping airborne bacteria out and reducing algae growth. Many manufacturers build evaporator plates in welded sections of copper, which are plated with nickel or tin. Plating the copper is necessary for sanitation and to allow the ice to harvest properly, but it may flake and peel from the copper with age, contaminating the ice. The unique plate design of Hoshizaki's evaporator with its stainless steel freezing surface and oval-shaped serpentine tubing produces a crystal clear, crescent-shaped hard cube of ice which displaces more liquid than square or diced cubes. Since pure water freezes first on the evaporator plate, minerals are left to run off into the reservoir, reducing scale buildup and saving frequent and expensive cleaning. Some of the benefits of the KM Cuber that help make your job easier include removable panels, separate compartments, an insulated evaporator section, a rebuildable pump assembly, a small ice drop zone, and a unique stainless steel evaporator. Now, let's look at the basic sequence of operation of the Hoshizaki KM Cuber. When the power switch is turned to the "Ice" position, the inlet water valve opens, allowing water to enter and fill the reservoir. The one-minute fill cycle assures that the ice machine will not start until there is sufficient water, eliminating overheated pumps and compressor problems. After one minute, the controller board checks to see if the float switch is closed, and if not, repeats the fill cycle until the water level is sufficient. The float switch check also occurs at the end of each harvest cycle to ensure continuous, automatic low water safety. When the switch is closed, the controller starts the initial harvest cycle which runs approximately 2-3 minutes depending on ambient air and water temperature. First, hot gas from the compressor enters the serpentine coils of the evaporator, while the inlet water valve remains open to assist in the harvest. This causes any ice remaining from the previous cycle to be released from the plate, while water continues to fill the reservoir. Starting the compressor in the harvest cycle with the hot gas valve open provides a no-load start, better efficiency, and longer life of the compressor and components. When the thermostat senses that the evaporator temperature has reached 48 degrees Fahrenheit, the solid state defrost completion timer on the circuit board takes control of the remainder of the harvest cycle. During the harvest cycle, the inlet water valve brings water through the supply tube and down the center of the evaporator plates. This water flow also helps transfer heat from the serpentine coils to the stainless steel plates and pre-chills the water flowing into the reservoir. During the freeze cycle, water is pumped to the outside of the plates through the distributor tubes. In the freeze cycle, the hot gas and water valves are closed. As the self-contained condenser fan and pump motor starts, water is circulated up and across the outside of the evaporator plate and back down into the reservoir. The circuit board controls the freeze cycle for the first five minutes, providing short cycle protection. The float switch then assumes control to initiate the next harvest. If power to the machine is interrupted, the unit will always restart in the one-minute fill cycle. Before the second harvest, a 10-second pump-out cycle occurs. As the hot gas valve opens, allowing gas to warm up the evaporator, the pump motor stops for two seconds then begins again in reverse. This pumps out the water containing concentrated minerals from the bottom of the reservoir through the check valve and out the drain. At the same time, water is used to power flush the float switch. For improved cleaning, the pump-out timer on the circuit board may be adjusted to lengthen the cycle to 20 seconds. It can also be adjusted to occur every 1, 2, 5, or 10 cycles. These adjustments provide the service technician with the flexibility to overcome some problems associated with the high mineral content present in some local water supplies. When the pump-out cycle is completed, the pump motor stops and the inlet water valve opens. Just as in the initial harvest, the evaporator is warmed by the hot gas defrost and water assist, clearing any ice left frozen on the plate as the reservoir then refills in preparation for the next freeze cycle. The water level in the reservoir always overflows the stand pipe at the end of the harvest cycle. On top of the stand pipe is a displacement cap, which pulls additional minerals from the bottom of the reservoir and flushes them. This cleaning action can be extended by lengthening the defrost completion timer setting. When the bin is filled with ice, the machine automatically shuts off until more ice is needed. Let's review the basic sequence of operation: the ice maker always starts with the one-minute fill cycle. The initial harvest cycle clears ice from the plate, assures a full reservoir, and allows quick and easy compressor starting. After five minutes in the freeze cycle, the float switch assumes control to initiate the next harvest. The 10-20 second pump-out cleans the reservoir every 1, 2, 5, or 10 cycles. The normal harvest is the same as the initial harvest and allows the flush to clean the reservoir at the end of this cycle. For Tech Support, call 1-800-233-1940.

Copy and paste the embed code above.

Hoshizaki KM Cubers are designed to be efficient, sanitary, and easy to maintain. Stainless steel evaporator plates, a rebuildable pump assembly, and a small ice drop zone are just a few of the many benefits to these cubers.

Hoshizaki Ice Types

Hoshizaki Ice Types

Hoshizaki is a global leader in the design, manufacturing, and marketing of equipment for the food service industry. Award-winning products combined with an extensive sales and service network make Hoshizaki the right choice. Hoshizaki stands out from the completion in three key areas: 1. Stainless steel exterior throughout our entire product line, 2. Stainless steel ice-making surface, and 3. Individual cubes. Ice is one of the most important items served in any food and beverage operation. And if you don't think so, see what happens when you run out. Ice is no longer one size fits all. The latest trends show that operators are demanding a variety of ice to meet each site application. Perhaps it's the cube ice for beverages, or flaked ice for seafood displays; it's important to know which type of ice is just right. At Hoshizaki, we offer three styles of cube ice: our signature crescent cube, the IM square cube, and our AM gourmet cube (or "top hat" shape). Let's look at each type in more detail so you can determine how to specify "just right" for the operation. Our crescent cube has been called the world's most perfect ice for good reason. Our exclusive design produces a hard, pure, crescent-shaped ice cube. Cuber ice machines have features which differentiate it: the stainless steel flat ice-making surface is durable with long-lasting construction. This makes it easy to clean and produces clear, pure cubes. Individual square cubes are designed for the discriminating customer. These hard, large cubes are a favorite of mixologists for adult beverages and specialty drinks. Top hat-style cubes provide a hard individual gourmet ice. They are perfect for offices, residential, rooms or suites, outdoor kitchens, and healthcare. In the flake category, we offer the traditional fine-flaked ice and cubelets, a larger chewable ice. Ice is formed in a barrel-type cylinder, moved upward through an extruding head, producing a dry, flaked, or cubelet ice. Available in a wide variety of configurations, our cubelet ice offers fast cooldown with good displacement. It's a customer favorite because it absorbs beverage flavors, allowing them to linger on your taste buds. Popular in produce and seafood displays, as well as healthcare, our flaked ice is a moldable ice that quickly cools down and maintains freshness of foods. All Hoshizaki models have a stainless steel exterior, providing the perfect combination of sophistication and durability. Hoshizaki is Energy Star Partner of the Year. At Hoshizaki, our performance says it all. We rank the highest in efficiencies in our reported product categories for Energy Star. Hoshizaki: The right choice.

Copy and paste the embed code above.

Hoshizaki is an industry leader in manufacturing commercial ice machines. Food service operators have more choices than ever before when it comes to individual ice cubes. The gourmet / top hat ice shape is perfect for offices or hotels, while square cubes can be used to keep your crafted cocktails cold. Hoshizaki even offers chewable cubelet ice designed to cool down drinks faster or keep your seafood display chilled to the perfect temperature.

Hoshizaki Ice Machine Installation

Hoshizaki Ice Machine Installation

The purpose of this video is to demonstrate the proper installation of Hoshizaki ice machines. While the KM cuber and flaker machines differ in some features, the installations are basically the same. In order to avoid problems after starting up, it is important that you install these machines properly the first time. There are several things you should do before installing the ice maker. First, take a look at the installation site. Remember, these ice makers are not intended for outdoor use. For best results, the ice maker should not be located next to ovens, grills, or other high-heat producing equipment. The location should provide a firm, level foundation for the ice maker and storage bin. Check the installation site to be sure there's an adequate water supply and proper drainage. Be sure to allow for a 6 inch clearance at the rear, sides, and top of the machines intended location to allow for proper air circulation and ease of maintenance and service. If you are installing an auger type ice maker, it is necessary to allow for adequate clearance above the unit to allow for during service. Next, inspect the exterior of the cartons for visible damage and unpack the storage bin. Make sure it is the correct bin for your application. Attach the four adjustable legs provided to the bottom of the storage bin and position it in the selected permanent position. Then, unpack the ice maker, being careful to save the registration cards located in the pouch on the carton. Also, remove all packing material and tape from inside the machine and remove the package containing the installation manual and accessories. Always refer to this manual or your Hoshizaki technician's pocket guide and carefully follow the instructions for installing the ice maker. To prevent damage, remove the outer panels before installing the ice maker. Now, check to see that the refrigerant lines do not rub or touch other line surfaces. On air cooled units, be sure that the fan blade turns freely. Check that the compressor is snug on all mounting pads. Finally, check the name plate to make sure that your electrical service is the same as the voltage specified. The gasket provided with the Hoshizaki bins provides an adequate seal between the two units. Place the ice maker on top of the storage bin and secure it by using the two mounting brackets and four bolts provided. Level the ice maker storage bin in both the left to right and front to rear directions using the adjustable bin legs. If you're stacking two S units on a single bin, remove the top panel and ABS evaporator cover from the lower unit. Set the second unit on top and secure it with the brackets provided in the accessory package. Remove the bin control holder and bulb from the top bracket and round it to the bottom unit bracket, taking care not to touch the suction or discharge lines or the compressor base with the controlled capillary tube. Use the top bulb holder to secure it to the bottom bracket. Plug in both bin control plugs and be aware that Hoshizaki stacked units operate independently of each other. When making the electrical connections, it is important that they be made in accordance with the instructions on the warning tag provided with the leads in the junction box. Make sure the white leads are connected to the neutral conductor of the power source. To prevent possible electric shock or damage to the machine, be sure to install a proper ground wire to the ice maker. On 208/230V single-phase applications, a dedicated neutral wire is required by national electrical codes. A separate power supply or receptacle is required for the installation of each ice maker. Be sure to check the name plate for proper capacity. On units requiring the installation of a remote condenser, the unit must be installed in a permanent location. If the condenser unit supplied is not the appropriate Hoshizaki condenser, be sure that the application has been approved in writing by the Hoshizaki technical support department. The installation site should be firm and flat. The location should also be dry and well ventilated. This means locating the unit away from standing water and providing 24 inch clearance on both the front and rear of the unit. Also, when locating the condenser, keep in mind that the maximum refrigerant line length with a factory charge is 66 feet. This can be extended to a maximum of 100 feet with an additional charge. Consult the manual for recommendations for line size and charge amounts. To install the remote condenser unit, first remove it from the carton and secure the legs squarely with eight M8 by 16 mm hexagon bolts and M8 nuts. Next, secure the legs to the roof curb with eight bolts in the eight mounting holes. When installing two remote condenser units, you may stack them to save space. Attach the upper condenser unit on top of the lower unit and secure it with the four screws provided. When installing two copper tubing sets between the ice maker and condenser units, take extra care to mark the refrigerant lines and electrical connections. This will assure that they will not get crossed during installation. Each copper tubing should be sized properly and insulated separately. Pre-charged tubing kits are available from Hoshizaki America in 20, 35, and 55 foot lengths. Line sets fabricated on the job should be evacuated through the charging ports on the Aeroquip couplings and charged with refrigerant vapor to a pressure of 15 to 30 PSIG. Pre-charged tubing kits do not need to be evacuated. To connect line sets to the ice maker and condensing units, remove the plastic caps that connect the couplings and place a small amount of clean, dry refrigerant oil on the O rings and male threads on each connection. Connect the refrigerant lines with the proper-sized Aeroquip fittings to the connection of the condenser unit and ice maker. Then, tighten the fittings until they bottom out, and turn them 1/4 round more. This provides a leak free, brass to brass seal. The fan controlled wiring in the ice making unit requires a 3 wire circuit. To connect the circuit, first remove the panel and junction box cover from the condenser unit. This circuit should be routed through seal-tight conduit. A disconnect may be required by a local code. Connect the fan motor leads in the junction box of the remote condenser unit to the fan motor leads in the junction box of the ice maker. A proper ground wire is required to prevent possible electrical shock. The ice maker inlet water line must be sized correctly for proper operation. Check your manual carefully to be sure which size is required for the ice maker you are installing. Depending on the local water quality, the installation of an external filter with an adequate flow rate may be required for the ice making inlet. The water supply pressure should be a minimum of 10 PSIG and a maximum of 113 PSIG. If the pressure exceeds 113 PSIG, you will need to install a pressure reducing valve. On water cooled models, two separate water supply inlets are provided: one for the ice making inlet and the other for the water cooled condenser inlet. The drain outlet for the ice maker reservoir uses a 3/4 inch female pipe thread or FPT. The drain for condensation is a 3/8 inch ID pipe. Be sure the ice maker drain and the condenser drain piping connections are made separately from the bin drain. Hard piping with copper or PVC is recommended. On water cooled models, a separate 1/2 inch FPT connection is provided for the condenser drain outlet. All Hoshizaki ice makers should be installed in accordance to all applicable national, state, and local regulations. Also, a back flow preventer may be required by local codes. Now that you have installed the Hoshizaki ice maker, review the final check list provided in the installation manual. At the point that the list requires you to start the ice machine, flush the water system thoroughly and check the unit for proper operation. Check the bin control switch for correct operation and position. This can be accomplished by holding an ice cube in contact with the bulb while the ice maker is running. The machine should stop within six to ten seconds. Once the installation is complete, carefully score the edges of the protective plastic film and peel the film from the exterior panels. Make sure to give the end user the instruction manual and review the operation of the ice maker, stressing the importance of performing the recommended periodic maintenance. Also, be sure to give the end user the name and phone number of an authorized service agent. Remind them to fill out the warranty tag and forward it to the factory for warranty registration. Once you have successfully completed the check list, you can be sure that the Hoshizaki ice maker is installed correctly and will avoid the unnecessary problems that sometimes occur due to improper installation. Remember, while this video has shown you the proper installation procedures, you should always refer to the ice maker manual or your Hoshizaki technician's pocket guide for detailed installation information.

Copy and paste the embed code above.

Properly install your Hoshizaki ice machine with these step-by-step instructions!

Hoshizaki KM Series Ice Machines: Stainless Steel Evaporator

Hoshizaki KM Series Ice Machines: Stainless Steel Evaporator

Hoshizaki KM series ice machines: stainless steel evaporator. Individual crescent cubes.

Copy and paste the embed code above.

This video shows you how the Hoshizaki KM series ice machine evaporator works to produce individual crescent ice cubes.

Hoshizaki Ice: The Most Important Ingredient in Drink Making

Hoshizaki Ice: The Most Important Ingredient in Drink Making

I'm Jenner Cormier, We're here today at our beautiful bar, Isabelle, going to make you guys a few drinks with Hoshizaki ice, our preferred choice. We're going to start with some chocolate bitters, going to add in 2 dashes of those. Followed by some fresh meyer lemon juice, and a barspoon of homemade yellow plum jam. You could substitute in just about anything, in this case. Anything seasonal, anything with some nice sweetness, some nice brightness. That'll act as our sweetening agent as well. We're going to add a little bit of fresh mint, just going to use some of the leaves, leave that sprig for garnish. We're going to add some overproof bourbon, a nice healthy ounce. Followed by an aromatized wine, full French. So we're going to add some ice in here, give it a good shake. Today, we're lucky enough to be using Hoshizaki's crescent cube, which is going to give us a really nice chill on the drink without over diluting. Now we're going to fine strain this into a chilled glass. See we don't have many ice shards? It's that wonderful, dense, crescent cube we used. Going to quickly chill down our mixing vessel, with this wonderful 1" cube from Hoshizaki. We're going to jump right in, 2 dashes of bitter truth Jerry Thomas bitters, followed by a healthy half ounce of moscow, we will follow that up with a nice artichoke flavored amaro. Tie that drink together with Plantation's pineapple rum. So we're stirring this drink with Hoshizaki 1" cubes, they're nice and dense, so we're going to get a really wonderful chill with just the right amount of dilution that we're looking for. We're going to strain that into a nice, chilled, old fashioned glass, and we're going to express an orange zest over the surface of the drink. I think that far too often, ice is overlooked as a main ingredient in drink making. You can depend on Hoshizaki's ice to produce a consistent, final product.

Copy and paste the embed code above.

Ice is a main ingredient in proper drink making, and thanks to Hoshizaki, you'll always have a dense, perfect ice cube for drinks. Watch this video to learn more about how Hoshizaki ice aids in making wonderfully chilled products every time.

Hoshizaki KM Series Ice Machines: How to Sanitize the Water System

Hoshizaki KM Series Ice Machines: How to Sanitize the Water System

Sanitizing the water system. Mix a commercial ice machine sanitizer as per directions on the panel. Or, a 5 1/4 percent sodium hyper chloride solution. Circulate this solution for 5-10 minutes over the evaporator surface and rinse. Flush the solution from the machine with clean, fresh water before restarting the ice maker. We hope this video has helped you better understand the basic sequence of operation and check out procedure for Hoshizaki KM cubers.

Copy and paste the embed code above.

This instructional video gives you insight on how to sanitize the water system in your Hoshizaki KM series ice machine.

Hoshizaki KM-520MRJ Specs
Width 22 Inches
Depth 27 3/8 Inches
Height 28 Inches
Phase 1 Phase
Voltage 115 Volts
24 Hour Ice Yield 547 Pounds
Condenser Type Remote
Energy Star Qualified Yes
Ice Type Crescent Cubes
Made in America Yes
NSF Listed Yes
Plug Type Hardwire
Type Remote Condensers

Customer questions about this product

What does "remote cooled" mean?
Remote cooled models require a separate external refrigeration system for them to work. The advantage of remote refrigeration is that it removes the noise and heat from the area where the unit is located. If you have any questions on the best unit to fit your needs, please contact Customer Solutions!
How do I match up ice machines, bins, and dispensers?
To help you find the right bin / dispenser / machine combination for your needs, you'll find manufacturer recommended ice bins and dispensers listed in the You May Also Need items on each ice machine's product page. Dispensers and ice bins will have manufacturer recommended ice machines listed in the You May Also Need items on their pages. If the bin or dispenser is wider than the ice machine, additional adapters, deflectors, and/or top kits may be necessary to join the machine to the bin. Please refer to the provided documentation on the ice machine and ice bin / dispenser product pages for more information.

Additionally, adapter and deflector kits can be used to match up ice machines with other types of bins / dispensers. When available, literature from the manufacturer regarding bin/ dispenser / machine compatibility and adapter / deflector kits is also included on our product pages and is kept as up-to-date as possible. If you have any questions, our Customer Solutions team is also happy to help!
Does this ice machine come with a condenser?
No, you have to purchase the condenser separately and you may have to purchase additional line kits for the refrigerant. These items are listed in the “You May Also Need” items for compatible condensers and/or ice machines, along with any literature provided by the manufacturer to help you get what you need.
Why is a water filter automatically added to my cart with this item?
The use of poor quality feed water may void your equipment's warranty. Therefore, it’s important that your water be filtered to the highest quality and a compatible water filter will be included when you add this piece of equipment to your cart. You may remove the filter from the cart prior to purchase.
Will this ice machine meet my business’s ice demand?
Every business type has unique demands for ice. If you have any questions about how much ice you’ll need please reference our Types of Ice Machines buying guide.
My ice machine has been shut down, or not in use since the COVID-19 shutdowns, how should I restart it?
If your ice machine has been shut down or not in use for a prolonged period time, please reference your machine's user-manual for a restart procedure, often called “Winterization." Please reference your user manual or contact customer service with any questions.
Ask your own question!

Hoshizaki KM-520MRJ Details

Designed to produce great tasting ice at an efficient rate, this Hoshizaki KM-520MRJ 22" Slim-Line remote cooled ice machine combines reliability with top notch energy saving capabilities. With the ability to produce up to 547 lb. of ice cubes per day, this unit is the perfect addition to your restaurant or convenience store. Its self-diagnostic programming automatically adjusts to changing conditions to make sure that you have the right amount of ice at the right times.

As a remote cooled unit, this ice machine requires the use of a remote condenser (sold separately). With a remote condenser, you can place the ice machine where you need it while installing the condenser elsewhere. This is ideal if you need to reduce noise or heat output in your serving area!

This unit uses utilizes a CycleSaver design for maximum performance and energy efficiency, while consistently producing crescent shaped ice cubes that are both crystal clear in appearance and easy to chew. The stainless steel exterior and evaporator are designed for years of dependable service, and thanks to the H-GUARD Plus antimicrobial protection, you can be sure of a safe and sanitary product, no matter what! The EverCheck alert system notifies you when your machine needs serviced, making maintenance simpler than ever. The snap fit parts and simple one hour cleaning process ensure that cleaning is easy. It requires a 115V electrical connection.

Overall Dimensions:
Width: 22"
Depth: 27 3/8"
Height: 28"

This Item Ships via Common Carrier. For more information and tips to help your delivery go smoothly, click here.

Because this item is not stocked in our warehouse, processing, transit times and stock availability will vary. If you need your items by a certain date, please contact us prior to placing your order. Expedited shipping availability may vary. We cannot guarantee that this item can be cancelled off of the order or returned once it is placed.

  • Energy Star Qualified

    Energy Star Qualified

    This item has been Energy Star Qualified by the US Environmental Protection Agency and the US Department of Energy, making it an energy-efficient product.

  • NSF Listed

    NSF Listed

    This item meets the standards imposed by NSF International, which focuses on public safety, health, and the environment.

  • Made in America

    Made in America

    This item was made in the United States of America.

  • Hardwired


    This product must be hardwired by a professional; it does not plug into a standard wall outlet.

  • ARI / AHRI

    ARI / AHRI

    This certification is awarded by the Air-Conditioning, Heating, and Refrigeration Institute to denote products of exceptional performance.

  • UL Certified

    UL Certified

    This item has been tested and meets the standards imposed by the Underwriters Laboratories (UL). Refer to the Enhanced UL Mark in this item's documentation for more details.

  • 1/4

    1/4" Water Connection

    This unit comes with a 1/4" water connection.

Leave a review of this product!

If you've used this product, log in and leave a review to tell us and other customers what you thought about it. Get paid up to $16 for submitting one of the first text, photo, or video reviews for this item. View your account for details.

Login or Register