Login or enter your email to be instantly sent the price!

Why do we do this?

One of our friendly Customer Service reps will be happy to give you the price for this item! Start a Live Chat
Mon-Thur 24 Hours, Fri 12AM-8PM EST
Sat & Sun: 9AM-4PM EST.

  • Produces up to 321 lb. of "cubelet" ice per day
  • 40 lb. ice storage capacity
  • Corrosion-resistant stainless steel exterior
  • CleanCycle feature rids unit of impurities every 12 hours
  • H-Guard Plus antimicrobial agent adds further protection against cross contamination

UPC Code:




Usually Ships in 1-2 Business Days

White Glove Delivery - Available -

What is White Glove service?

Standard common carrier delivery options cover the cost of getting an item to your shipping address but our White Glove delivery service does that and more!

The White Glove agent will call to schedule a delivery appointment within a four hour window, which gives you the flexibility to work around your busy schedule and to prepare the space where your item will be placed. Upon delivery, trained professionals will unload your item from the truck, bring it into the room of choice, unpack the item and remove all packaging debris from the premises.

Please note that White Glove delivery will typically add 5 - 7 business days to your order's transit, and only includes 30 minutes of on-site time. If on-site time beyond 30 minutes is required, you may be responsible for additional fees. Additionally, this service does not include set-up of the items being delivered.

You May Also Need

"You May Also Need" items are guaranteed to work with the item you are viewing, such as lids that will fit a cup or casters that will fit a piece of equipment. If an item is not listed in this section, we do not guarantee that it will work with the product you are viewing and do not recommend that you purchase them for use together.

Hoshizaki Flakers/DCMs Training: Part 1

Hoshizaki Flakers/DCMs Training: Part 1

Before we begin to describe the basic operation of the flaker and DCM models, let's look at some of the features and benefits that make Hoshizaki machines so dependable and serviceable. Removable panels make regular maintenance checks much easier. A solid state sequence timer provides automatic control over the continuous ice making process. Hoshizaki flakers and DCMs utilize and internal auger system with a direct drive spline coupled gear motor for dependable operation. A fully insulated stainless steel evaporator provides a durable freezing surface. Anti-magnetic stainless steel is used to eliminate pitting and corrosion on the evaporator and auger surface, helping increase efficiency and extending component life. The bearing are sleeve type alignment bearings. The carbon resin bearing material has a graphite base to provide lubrication eliminating possible grease contamination. The auger is driven by a sealed gear motor assembly which is protected by two overload sensing systems that protect against undue stress. A unique low water safety device developed by Hoshizaki shuts the unit down automatically if the unit switches fail to detect water in the reservoir. The unit will restart the ice making process only when the water level is restored. Removable panels, a solid state sequence timer, anti-magnetic, stainless steel evaporator and auger, carbon alignment bearings, a sealed gear motor with overload protection, and a low water safety device. Just some of the features and benefits of the Hoshizaki flaker and DCM models that help make your job easier. Now, let's look at the basic sequence of operation of the Hoshizaki flakers and DCMs. The complete start up and shut down process for the flaker is operated by a series of timing circuits built into the solid state timer board. With the power switch on and the flush switch in the ice position, the inlet water valve opens allowing water to fill the reservoir. The ice making process will not begin until the reservoir is filled. When the dual float switches indicate the reservoir is filled, operation is turned over to the bend controlled magnetic proximity switch. And if it is closed, the unit begins ice production. At this point, the gear motor and ice condenser start up. Should the gear motor not start, a gear motor protect relay will automatically shut the unit down to protect against any component damage. If at any time during operation, the sealed gear motor should experience stress which causes an excessive amperage increase, a manual gear motor reset protector will shut the unit down. After one minute, the compressor starts, this delay will allow any ice left in the evaporator cylinder to be cleared. As the refrigeration system clears the water left in the evaporator cylinder, ice begins to form and is extruded within two to five minutes. Ice production will continue until the bin is full. Once the bin is full, ice pushes against the control which opens the magnetic proximity switch and begins the shut down process. On the M model flaker the gear motor, fan, and compressor, stop within six seconds after the bin control indicates a full bin of ice. A time delay is used in the smaller flakers and DCM units to allow the gear motor to clear the evaporator of ice. On these models, one minute after the bin control switch opens, the compressor stops. One minute later the gear motor and condenser stop. The unit will now sit idle until the ice is scooped away from the bin control which will cause the proximity switch to close and restart the unit. Unique among Hoshizaki flakers, is the automatic flush period. Designed to provide cleaner operation and longer bearing life. The automatic flush is operated by a 12 hour timer. The flush feature can also be operated by a manual flush switch when periodic cleaning and maintenance is required. When the flush timer or manual switch is activated, the flaker unit switches off within two minutes. One minute after either switch opens, the compressor shuts down. Followed a minute later by the gear motor and condenser fan. Next the flush valve opens allowing the complete water system to drain while on the flush timer the unit remains off for 15 minutes. Any ice remaining in the evaporator melts and the evaporator walls and chamber are completely flushed out. During this time, the inlet water valve will not be activated. During normal operation, the auger rotates inside the evaporator cylinder to break ice away from the cylinder walls and move it up to the extruding head and cutter. Because the auger is one of the major moving parts in the ice maker, it must be checked periodically for excessive bearing wear. Although flaker bearings are constructed of carbon impregnated resin, they may wear due to high mineral or silica content in the water. If not replaced, excessive bearing wear may cause damage to the auger and evaporator cylinder. To remove the auger for inspection, drain the water system, remove the clear ice shoot head and ice shoot bracket. Next, remove the stainless steel bolt that hold the cutter to the auger. Replace the bolt and use it to rock the auger back and forth to check for excessive play. To check for bearing wear, attempt to slip the 20,000th inch feeler gauge available through Hoshizaki between the auger bearing surface and bearing. If the bearing gap is more than .02 inches, replace both the top and bottom bearings. To remove the auger for bearing replacement, remove the allen head cap screws and water seals which hold the extruding head to the evaporator cylinder. Using the bolt and a large washer, or the cutter head installed upside down to hold the auger, lift the auger and extruding head up and out of the evaporator cylinder. When the auger has been lifted out, remove the extruding head and visually inspect the auger bearing surface for wear. The sleeve bearings are pressed into the extruding head and lower housing. To remove the lower housing, remove the allen head cap screws which hold the cylinder to the housing. Loosen the belly band screw, and lift the evaporator up about four inches. Then, tighten the screw to hold the evaporator in place. The housing and cylinder are sealed with an O ring. Care should be taken to protect the O ring for reuse. Or replace it when necessary when reassembling the unit. Remove the bolts at the base of the housing and remove the housing to replace the lower bearing. Have the bearings repressed and replace the parts in reverse order.

Copy and paste the embed code above.

Watch this video to learn about the features of Hoshizaki Flakers/DCMs as well as some of the maintenance procedures to keep your machine up and running.

Hoshizaki Flakers/DCMs Training: Part 2

Hoshizaki Flakers/DCMs Training: Part 2

The following preventative maintenance check will help keep Hoshizaki Flakers and DCMs dependable and serviceable for many years. Clean the removable air filter. Service the water filter and check the water valve screen. Check for bearing wear once a year. Look for loose wires, oil spots, water drips, and other signs of wear or damage. Clean the exterior of the ice maker with a soft cloth and neutral cleaner. And clean and sanitize the water system and bin. Annual cleaning and sanitizing of the water system is recommended. More frequent cleaning may be needed if there is a high mineral content in the local water supply. Instructions for cleaning are located inside the front panel. To clean the flaker, drain the water system, turn off the control switch, and incoming water supply. Mix the cleaning solution as directed on the front panel. Remove the reservoir cover and fill with cleaning solution until it overflows into the stand pipe. Allow the cleaner to set for 15 to 20 minutes to loosen the scale buildup. Turn the control switch to “on” and the flush switch to “ice”. Allow the flaker to make ice with the cleaner solution until the low water safety operates. Place a container under the ice drop zone to catch the frozen cleaning solution and then discard in a safe place. Inspect the reservoir. If the reservoir is clean, the evaporator is clean. If not, repeat the entire cleaning process. When you are sure the system is clean, turn on the water supply and flush the system thoroughly with fresh water. The same procedure should be used to sanitize the unit using a commercial ice machine sanitizing product. After a thorough flush, turn the unit on and allow it to make ice. Catch the first 10 minutes of product and discard it to ensure your customers’ ice is fresh and clean.

Copy and paste the embed code above.

Follow this simple, step-by-step video to make sure that your Hoshizaki flaker or DCM ice machine is properly cleaned and sanitized.

Hoshizaki Flakers/DCMs Training: Part 3

Hoshizaki Flakers/DCMs Training: Part 3

This video will demonstrate the proper way to perform a system diagnosis on flaker ice maker units. Before we cover how to diagnose electrical and component failures, let's review the flaker's sequence of operation. The sequence of operation is controlled by a series of timers within the solid state timer board. First, the flaker begins a startup when the flush switch is set to the ice position and the power switch is set to the on position. Power is then supplied to the inlet valve, allowing water to fill the reservoir. The unit will not begin the ice making process until the reservoir is filled. Next, when the dual float switches indicate a full reservoir, the bin control takes over and allows the unit to sequence up. At this point, the gear motor and condenser fans start. Should the gear motor experience undue stress from the rotating auger or the pressure of ice extrusion, the machine will automatically shut down through the gear motor protect relay, saving wear on the gear motor and bearings. After one minute, the compressor starts. This delay allows any ice left in the evaporator cylinder to be removed before basic refrigeration begins. As the refrigeration cools the water in the evaporator, ice begins to form on the cylinder wall within two to three minutes. The gear motor turns an auger inside the stainless steel cylinder. As ice forms on the inside wall, the auger breaks away the ice and moves it upward. The upward pressure extrudes the ice out the top of the cylinder and into the bin. Ice production will continue until the bin is full. Once the bin is full, the ice pushes against the bin control paddle. The paddle operates a magnetic proximity switch and a shutdown process begins. Within six seconds after the bin control indicates a full bin of ice, the gear motor, compressor, and fan stop. Self-contained units and DCMs sequence down. One minute after the bin control opens and indicates a full bin of ice, the compressor stops. One minute later, the gear motor and fan stop. Before beginning the diagnostics on a flaker ice maker, it's important that you first make sure there is proper water and power supplied to the unit. When troubleshooting for system failures, first remove the covers of the unit. Place the flush switch to the ice making position and turn the machine on. Remember, the unit will not start up unless the reservoir is full and both float switches are closed. If the water valve does not energize, check the water valve terminals for voltage. A meter reading of 24 volts indicates that the water control relay circuit is supplying power to the water valve. This means that the problem is either the water valve coil is open, the valve is stuck closed, or the water valve screen is plugged with debris. At this point, turn off the power supply and shut off the water supply. Remove the thumb nut and check for debris plugging the inlet stream. Next, check the coil for continuity with an alm meter. Replace the water valve if it is defective. Some flaker models have a built in periodic flush. The flush valve is operated either by the manual flush switch or by the 12 hour flush timer. If no power is supplied to the water control circuit at start up, it could be off on the 12 hour timer. You can advance the timer or check the timer contacts with the volt meter to determine if this is the case. After checking the flush timer, if there is no power to the inlet water valve, check the controls transformer secondary to make sure control voltage is present. You can easily check the secondary and circuit fuse by removing the control box cover and checking across terminals one and two on the timer for 24 volts. If control voltage is present, check the flush ice switch for contacts. If the water valve is energized and the reservoir is over flowing, check both float switches and the water control relay. To check the float switch, twist and lift the assembly out of the reservoir. The float switch has three wires: black, red, and blue. First, check the blue and black or common wire with your meter at the control box connector. When you raise the bottom float, the switch should be closed. When it is down, the switch should be open. Now, check the red and black wires. The float switch should again be closed when the top float is up and open when it is down. If the float switch needs to be cleaned, soak it in ice machine cleaner. If you take it apart, mark the top of the floats and be sure to replace them in their original position. This will allow you to have the correct timing on the water control relay circuit. To check the water control relay, review the wire color code on the wiring diagram and check the relay with your meter. When the reservoir fills and the water valve stops, the gear motor and condenser fan should start. If this does not occur, locate the bin control terminals on the timer board. Check the bin control's proximity switch by disconnecting the wires from these terminals. Check the wires with an alm meter to assure that the bin control is closed. Another way to check the proximity switch is to use a jumper. If you jumper across the bin control circuit pins five and six and the machine starts up, the bin control proximity switch is your likely problem. The terminal numbers may vary on older models. Always verify the terminal numbers on the unit wiring diagram. The solid state timer board controls the entire sequence of operation. To diagnose a bad timer board, first check across terminals one and two. You should have 24 volts or the machine will not cycle up. Then, jumper across terminals three and four. If the machine starts up, you should check your water control relay circuit as previously discussed. If the machine still doesn't start, other circuits must be checked before condemning the timer board. Now, jumper across terminals five and six to check the bin control. If the unit cycles up with the jumper in place, the board is good and the problem is with the bin control circuit. Check your wiring diagram to determine which voltage should be present at terminal eight. Depending on the model you are working on, this terminal could either be a line voltage or a controlled voltage circuit. If your meter reads the proper voltage, then the timer board is good and is supplying power to the gear motor relay or circuit. If the gear motor relay is not energizing at this point, it may have a bad coil or a mechanical problem. If the condenser fan is running and the gear motor is not, the relay is operating properly and there may be a problem with the gear motor circuit. If the gear motor and fan start but the compressor does not, check the gear motor protect relay. To check this circuit, jumper across terminals ten and eleven. If the compressor starts up within one minute, the problem is in the gear motor protect relay. If the compressor doesn't start after jumping ten and eleven, check the compressor circuit. To perform a quick check of the compressor circuit, turn the power switch off. Place a jumper across the black compressor relay on the timer board. This will bypass the timer and allow the compressor to start. Turn the power back on. If the compressor runs, the compressor circuit is okay. If not, use basic diagnostic procedures to check the compressor and start components. If the compressor circuit is okay, the timer board is probably bad and will need to be replaced. Remember, when servicing any Hoshizaki ice maker, always refer to your tech spec's guide for detailed information or call the Hoshizaki service hotline on your screen. Now that you have learned the various check out procedures, you should be able to diagnose most problems that occur with the flaker.

Copy and paste the embed code above.

Easily diagnose issues with your Hoshizaki ice machine with these step-by-step procedures.

Hoshizaki Ice Types

Hoshizaki Ice Types

Hoshizaki is a global leader in the design, manufacturing, and marketing of equipment for the food service industry. Award-winning products combined with an extensive sales and service network make Hoshizaki the right choice. Hoshizaki stands out from the completion in three key areas: 1. Stainless steel exterior throughout our entire product line, 2. Stainless steel ice-making surface, and 3. Individual cubes. Ice is one of the most important items served in any food and beverage operation. And if you don't think so, see what happens when you run out. Ice is no longer one size fits all. The latest trends show that operators are demanding a variety of ice to meet each site application. Perhaps it's the cube ice for beverages, or flaked ice for seafood displays; it's important to know which type of ice is just right. At Hoshizaki, we offer three styles of cube ice: our signature crescent cube, the IM square cube, and our AM gourmet cube (or "top hat" shape). Let's look at each type in more detail so you can determine how to specify "just right" for the operation. Our crescent cube has been called the world's most perfect ice for good reason. Our exclusive design produces a hard, pure, crescent-shaped ice cube. Cuber ice machines have features which differentiate it: the stainless steel flat ice-making surface is durable with long-lasting construction. This makes it easy to clean and produces clear, pure cubes. Individual square cubes are designed for the discriminating customer. These hard, large cubes are a favorite of mixologists for adult beverages and specialty drinks. Top hat-style cubes provide a hard individual gourmet ice. They are perfect for offices, residential, rooms or suites, outdoor kitchens, and healthcare. In the flake category, we offer the traditional fine-flaked ice and cubelets, a larger chewable ice. Ice is formed in a barrel-type cylinder, moved upward through an extruding head, producing a dry, flaked, or cubelet ice. Available in a wide variety of configurations, our cubelet ice offers fast cooldown with good displacement. It's a customer favorite because it absorbs beverage flavors, allowing them to linger on your taste buds. Popular in produce and seafood displays, as well as healthcare, our flaked ice is a moldable ice that quickly cools down and maintains freshness of foods. All Hoshizaki models have a stainless steel exterior, providing the perfect combination of sophistication and durability. Hoshizaki is Energy Star Partner of the Year. At Hoshizaki, our performance says it all. We rank the highest in efficiencies in our reported product categories for Energy Star. Hoshizaki: The right choice.

Copy and paste the embed code above.

Hoshizaki is an industry leader in manufacturing commercial ice machines. They offer a variety of ice shapes to suit any site application. From cube ice to chewable ice and even flaked ice, Hoshizaki has options for every sector of food service.

Width 26 Inches
Depth 22 1/2 Inches
Height 40 Inches
Height to Dispenser 8 1/8 Inches
Amps 10.25 Amps
Hertz 60
Phase 1
Voltage 115
24 Hour Ice Yield 618 Pounds
Bin Storage Capacity 40 lb.
Condenser Type Air Cooled
Dispenser Style Push Button
Ice Type Cubelet Ice
Installation Type Countertop
Made in America Yes
NSF Listed Yes
Power Usage 4.88 - 6.84 kWh per 100 lbs.
Type Ice / Water Combination Machines
Water Usage 12.5 Gallons per 100 lbs.

Customer questions about this product

Should I buy an air-cooled or water-cooled ice and water dispenser?
Air-cooled combination ice and water dispensers are the most common choice. They're more energy-efficient and use much less water than a water-cooled model. Unless you are replacing an existing water-cooled dispenser or are operating under very high ambient temperatures, you probably will want an air-cooled dispenser. It's a great idea to check what your existing dispenser is before placing your order so that the installation of the new one will go smoothly!
Ask your own question!


Dispense both water and ice from the same unit with this Hoshizaki DCM-270BAH-OS air cooled countertop ice maker and water dispenser! This unit can produce up to 321 lb. of easy to chew "cubelet" ice per day and holds 40 lb. of ice in its storage bin. An integrated CleanCycle feature performs a 15-minute purge every 12 hours in order to rid itself of impurities found within the water, making this unit safe for consumption no matter what time of day it is most frequented. A durable, corrosion-resistant stainless steel exterior will allow for years of high volume use, while the self-contained design also reduces opportunities for cross contamination.

For added protection, this unit is outfitted with an H-Guard Plus antimicrobial agent and uses R-404A refrigerant. The removable air filter provides effortless and sanitary cleaning. The DCM-300BAH requires a 115V electrical connection.

Overall Dimensions:
Left to Right: 26"
Front to Back: 22 1/2"
Height: 40"

This Item Ships via Common Carrier. For more information and tips to help your delivery go smoothly, click here.

Because this item is not stocked in our warehouse, processing and transit times will vary. If you need your items by a certain date, please contact us prior to placing your order. Expedited shipping availability may vary. We cannot guarantee that this item can be cancelled off of the order once it is placed.

  • NSF Listed

    NSF Listed

    This item meets the standards imposed by NSF International, which focuses on public safety, health, and the environment.

  • Made in America

    Made in America

    This item was made in the United States of America.

  • UL US & Canada

    UL US & Canada

    This item has been tested and meets safety standards imposed by the Underwriters Laboratories (UL) for use in the United States of America and Canada.

  • 5-15P


    This unit comes with a NEMA 5-15P plug.

Spec Sheet Specsheet Manual Manual Hoshizaki Warranty Ice Types Ice Types Guide

A PDF viewer is required to view this product's information. Download Adobe Acrobat software

Warranty Info

Note: warranty may vary depending on equipment production date.

Get paid to review this product!

If you've used this product, simply log in and share your text, video, and photo reviews of it. The customers on the left did it, and you can too! Earn up to $16.00 per product.

Login or Register